When given an equation in parametric form, how can you figure out dy/dx?

Assuming we are given that x = f(t) and y = g(t), we first differentiate x with respect to t to obtain dx/dt. Then, we differentiate y with respect to t to obtain dy/dt. Much like fractions, we can find dt/dx by finding the inverse of dx/dt (by doing 1 divided by dx/dt).

Now that we know how to figure out dy/dt and dx/dt, again similarly to fractions we can multiply these together. Note how the "dt"s cancel out and we are left with dy/dt.

DJ
Answered by Dave J. Maths tutor

3437 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x coordinate of the stationary points of the curve with equation y = 2x^3 - 0.5x^2 - 2x + 4


Let y = x^x. Find dy/dx.


Consider the closed curve between 0 <= theta < 2pi given by r(theta) = 6 + alpha sin theta, where alpha is some real constant strictly between 0 and 6. The area in this closed curve is 97pi/2. Calculate the value of alpha.


Simplify (3 √(5))^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning