When given an equation in parametric form, how can you figure out dy/dx?

Assuming we are given that x = f(t) and y = g(t), we first differentiate x with respect to t to obtain dx/dt. Then, we differentiate y with respect to t to obtain dy/dt. Much like fractions, we can find dt/dx by finding the inverse of dx/dt (by doing 1 divided by dx/dt).

Now that we know how to figure out dy/dt and dx/dt, again similarly to fractions we can multiply these together. Note how the "dt"s cancel out and we are left with dy/dt.

DJ
Answered by Dave J. Maths tutor

3088 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°


I don't fully understand the purpose of integration. Could you please explain it to me?


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences