When given an equation in parametric form, how can you figure out dy/dx?

Assuming we are given that x = f(t) and y = g(t), we first differentiate x with respect to t to obtain dx/dt. Then, we differentiate y with respect to t to obtain dy/dt. Much like fractions, we can find dt/dx by finding the inverse of dx/dt (by doing 1 divided by dx/dt).

Now that we know how to figure out dy/dt and dx/dt, again similarly to fractions we can multiply these together. Note how the "dt"s cancel out and we are left with dy/dt.

DJ
Answered by Dave J. Maths tutor

3137 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate gf(-5) for the functions f(x)=3x+7, g(x)=3x^2+6x-9


express (1+4(root7)) / (5+2(root7)) as a+b(root7), where a and b are integers


If I had an equation with both 'x' and 'y' present, how would I find the gradient?


How does integration work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences