How do you rationalise the denominator?

If a denominator is has just one square root (i.e 1/(3)^0.5). Then, since it is a fraction you can multiply top and bottom by the same number and maintain the value of the fraction. Hence we multiply top and bottom by the square root in the denominator,(in previous example we would use (3)^0.5). Then using the rules of roots we now have a rational denominator. If denominator has more than 1 part to it (i.e 1/(1+(5)^0.5)) then we must be more clever. Recall difference of 2 squares, (x+y)(x-y)=x^2-y^2, hence if either x or y were square roots then, the answer would be rational. So now consider1/((1+(5)^0.5) is the denominator, by multiplying top and bottom by (1-(5)^0.5) we have rationalised the denominator since we get (1-(5)^0.5)/(1-5)= (1-(5)^0.5)/(-4)

NA
Answered by Natasha A. Maths tutor

4094 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If a line t (f(x) = 2x +3) is perpendicular to a line n that passes through point (3,7), what is the equation of line n?


Factorise x^2 - 8x - 20


A ship sets off on a bearing of 072 degrees from port and travels 3.4km in a straight line. How far north of the ship's starting position is its final position? Give your answer to two decimal places.


[Higher] Simplify the following expressions: x^7 X x ^5 and (x^-2)^-3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning