Given that y = sin(2x)(4x+1)^3, find dy/dx

The product rule states that (uv)' = u'v + uv' Therefore we know that to find dy/dx we must have (sin(2x))'(4x+1)^3 +sin(2x)((4x+1)^3)' We can differentiate sin(2x) to 2cos(2x) and using the chain rule we can differentiate (4x+1)^3 to 12(4x+1)^2 Therefore our answer is 12sin(2x)(4x+1)^2 + 2cos(2x)(4x+1)^3

MM
Answered by Myles M. Maths tutor

4442 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How Do I Integrate cos(x) and sin(x) with higher powers?


How do I know which is the null hypothesis, and which is the alternative hypothesis?


Solve the equation 3x^2/3 + x^1/3 − 2 = 0


How do I integrate by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning