Given that y = 5x^(3) + 7x + 3, find dy/dx

(i): 15x^(2)+7 --- in order to arrive at this answer, we can divide the equation into 3 separate parts: 5x^(3) and 7x and 3. For the first part, you would multiply the first number, 5 by the power, in this case, 3, leaving us with 15. Then, you have to decrease the power by 2, leaving us with 15x^(2).

For the second part, the power is actually 1, so 7x^(1). The same process is used, multiply 7 by 1, leaving us with 7. Decrease the power by 1, leaving us with 0. Anything multiplied to the power of 0, is 1. 7x1=7.

AP
Answered by Angela P. Maths tutor

7117 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences