MH
Answered byMax H.Maths Tutor

How to integrate cos^2(x) ? ("cos squared x")

We can't integrate cos^2(x) as it is, so we want to change it into another form. We can easily do this using trig identities.

1) Recall the double angle formula:

cos(2x) = cos^2(x) - sin^2(x).

2) We also know the trig identity sin^2(x) + cos^2(x) = 1, so combining these we get the equation cos(2x) = 2cos^2(x) -1.

3) Now, we can rearrange this to give: cos^2(x) = (1+cos(2x))/2.

4) So, we have an equation which gives cos^2(x) in a nicer form, which we can easily integrate using the reverse chain rule.

5) This eventually gives us an answer of:

x/2 + sin(2x)/4 +c

Related Maths A Level answers

All answers ▸

Given that y = sin(2x)(4x+1)^3, find dy/dx


Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


Why does 1/x integrate to lnx?


How to do Integration by Parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning