Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled

A. t=0 ; x=250,000 B. 2020, so t=3. plug in to equation > x=250,000e^(0.012)3 = 259,163 (people so cannot round up) C. Population to double so 500,000 = 250,000e^(0.012)t -> 1/0.012(ln2) = t t= 57.7 years ; 2017 + 57 = 2074 when population doubles

JG
Answered by James G. Maths tutor

4506 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)


How do you integrate ln(x)?


How do you find the stationary points of a graph?


The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning