Find the integral I of e^(2x)*cos*(x), with respect to x

Because we have a product of two functions of x, our first instinct is to apply integration by parts. Let u = e^(2x) and v' = cos(x). We then integrate v' to find v = sin(x) and differentiate u to find u' = 2e^(2x). Applying the by parts rule I = uv - (the integral of)(vu') we get I = e^(2x)sin(x) - 2(the integral of)(e^(2x)*sin(x)). The integral on the RHS is similar to the one we started with, so apply integration by parts again, this time with u = e^(2x), v' = sin(x), u' = 2e^(2x), v = -cos(x). This gives us I = e^(2x)sin(x) + 2e^(2x) - 4(the integral of)(e^(2x)cos(x)). The integral on the RHS is what we started with, so we substitute I in for it, getting I = e^(2x)sin(x) + 2e^(2x) - 4I. Rearranging and solving for I gives us I = e^(2x)(1/5)(sin(x) + 2cos(x)).

TP
Answered by Thomas P. Maths tutor

13313 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the factors of x^3−7x−6


find the integral of f'(x)=2x+5


integrate (2x^4 - 4/sqrt(x) + 3)dx


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning