Find the integral I of e^(2x)*cos*(x), with respect to x

Because we have a product of two functions of x, our first instinct is to apply integration by parts. Let u = e^(2x) and v' = cos(x). We then integrate v' to find v = sin(x) and differentiate u to find u' = 2e^(2x). Applying the by parts rule I = uv - (the integral of)(vu') we get I = e^(2x)sin(x) - 2(the integral of)(e^(2x)*sin(x)). The integral on the RHS is similar to the one we started with, so apply integration by parts again, this time with u = e^(2x), v' = sin(x), u' = 2e^(2x), v = -cos(x). This gives us I = e^(2x)sin(x) + 2e^(2x) - 4(the integral of)(e^(2x)cos(x)). The integral on the RHS is what we started with, so we substitute I in for it, getting I = e^(2x)sin(x) + 2e^(2x) - 4I. Rearranging and solving for I gives us I = e^(2x)(1/5)(sin(x) + 2cos(x)).

TP
Answered by Thomas P. Maths tutor

13401 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When I try to integrate by parts, I end up in an infinite loop. Why is this, and how do you stop?


How come x^2 = 25 has 2 solutions but x=root(25) only has one? Aren't they the same thing?


Expand and simplify (3 + 4*root5)(3 - 2*root5)


Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning