Integrate a^x with respect to x

This comes up in C4 in A level maths and differentiating it could come up in C3. You can write a^x as exp(ln(a^x))=exp(xln(a)) then differentiating this, you get ln(a)exp(xln(a))=ln(a)a^x. By differentiating you can recognise the integral will be (a^x)/ln(a) +c or you can perform a u substitution where u=a^x then du=ln(a)a^xdx. dx=1/ln(a) * 1/u * du. Therefore the integral is now u/(u*ln(a)) du = 1/ln(a) du = u/ln(a) +c = a^x/ln(a) +c.

I have picked this since it could come up in C3 and C4 and I have had the same question asked to me by my peers before. The working can be further expanded by explaining how a^x can be written in terms of e and the natural logarithm, with these being inverse functions of each other, a topic within C3.

JW
Answered by John W. Maths tutor

38159 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate this equation: xy^2 = sin(3x) + y/x


Given that 2-3i is a root to the equation z^3+pz^2+qz-13p=0, show that p=-2 and q=5.


The number of bacteria present in a culture at time t hours is modeled by the continuous variable N and the relationship N = 2000e^kt, where k is a constant. Given that when t = 3, N = 18 000, find (a) the value of k to 3 significant figures


Find the stationary point(s) on the curve 2xsin(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning