Solve the following simultaneous equations to obtain values for x and y: 2x + y = 7 & 3x - y = 8.

Label your equations 1 and 2 respectively. Make y the subject of equation 2 by taking away 3x from both sides and multiplying both sides by -1, to get y = 3x - 8. Now substitute this into equation 1 (i.e. replace the 'y' in equation 1 with '3x - 8'), giving 2x + (3x - 8) = 7. By grouping like terms together and adding 8 to both sides we get 5x = 15. Now to obtain our value of x simply divide both sides by 5, hence x = 3. Now use this value of x to find y. Substitute x = 3 into equation 2. So 3(3) - y = 8. This gives 9 - y = 8. By subtracting 9 from both sides and multiplying both sides by -1, we can get our value of y, giving y = 1. 

PM
Answered by Pratham M. Maths tutor

3407 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3x+2y=22, x=y-1


c) Sharon is organising an event. The tickets cost 12 pounds each. Sharon paid 200 pounds for the cost of the event. How many tickets will Sharon have to sell to make a profit? (2 marks)


A stone is thrown upwards with a speed of v metres per second. The stone reaches a maximum height of h metres. h is directly proportional to v^2. When the stone is thrown at 10m/s, max height is 5m. Work out the maximum height reached when v = 24.


How do I expand (x - 4)(2x + 3y)^2 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning