Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)

Sec2A - Tan2A Definition of Sec and Tan = 1/Cos2A - Sin2A/Cos2A Combining Fractions = (1 - Sin2A) / (Cos2A) Apply Double Angle Formula = (1 - 2SinACosA) / (Cos2A - Sin2A) Make use of 1 = Cos2x + Sin2x and Difference of two squares = (Cos2A + Sin2A - 2SinACosA) / (CosA + SinA)(CosA - SinA) Factorise the numerator = (CosA - SinA)2 / (CosA + SinA)(CosA - SinA) Divide out by (CosA - SinA) = (CosA - SinA) / (CosA + SinA)

JC
Answered by James C. Maths tutor

37108 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to y = x^2 - 4x + 9 at the point (3,15)


Write (3 + 2√5)/(7 + 3√5) in the form a + b√5


Express (5x + 3)/((2x - 3)(x + 2)) in partial fractions.


What does differentiating do?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning