Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)

Sec2A - Tan2A Definition of Sec and Tan = 1/Cos2A - Sin2A/Cos2A Combining Fractions = (1 - Sin2A) / (Cos2A) Apply Double Angle Formula = (1 - 2SinACosA) / (Cos2A - Sin2A) Make use of 1 = Cos2x + Sin2x and Difference of two squares = (Cos2A + Sin2A - 2SinACosA) / (CosA + SinA)(CosA - SinA) Factorise the numerator = (CosA - SinA)2 / (CosA + SinA)(CosA - SinA) Divide out by (CosA - SinA) = (CosA - SinA) / (CosA + SinA)

JC
Answered by James C. Maths tutor

35543 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (1 + 4 * 7^0.5)/(5 + 2 * 7^0.5) in the form m + n * 7^0.5


Differentiate y=e^(x^2+2x)


What is the determinant of a 2 by 2 matrix?


Can you show me why the integral of 1/x is the natural log of x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences