Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)

Sec2A - Tan2A Definition of Sec and Tan = 1/Cos2A - Sin2A/Cos2A Combining Fractions = (1 - Sin2A) / (Cos2A) Apply Double Angle Formula = (1 - 2SinACosA) / (Cos2A - Sin2A) Make use of 1 = Cos2x + Sin2x and Difference of two squares = (Cos2A + Sin2A - 2SinACosA) / (CosA + SinA)(CosA - SinA) Factorise the numerator = (CosA - SinA)2 / (CosA + SinA)(CosA - SinA) Divide out by (CosA - SinA) = (CosA - SinA) / (CosA + SinA)

JC
Answered by James C. Maths tutor

35226 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


Differentiate F(x)=(25+v)/v


Find the integral of ln(x)


Explain the Chain Rule


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences