Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)

Sec2A - Tan2A Definition of Sec and Tan = 1/Cos2A - Sin2A/Cos2A Combining Fractions = (1 - Sin2A) / (Cos2A) Apply Double Angle Formula = (1 - 2SinACosA) / (Cos2A - Sin2A) Make use of 1 = Cos2x + Sin2x and Difference of two squares = (Cos2A + Sin2A - 2SinACosA) / (CosA + SinA)(CosA - SinA) Factorise the numerator = (CosA - SinA)2 / (CosA + SinA)(CosA - SinA) Divide out by (CosA - SinA) = (CosA - SinA) / (CosA + SinA)

JC
Answered by James C. Maths tutor

37116 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ln(x) with respect to x?


If I had an equation with both 'x' and 'y' present, how would I find the gradient?


Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning