show that tan(x)/sec2(x) = (1/2)sin(2x)

tan(x)/sec2(x) Sec(x) = 1/cos(x), therefore 1/sec(x) = cos(x). also tan(x) = sin(x)/cos(x).using substitution, tan(x)/sec2(x) = (sin(x)/cos(x)) * cos2(x) = sin(x)cos(x). sin(x+y) = sin(x)cos(y) + cos(x)sin(y). since 2x = x+x, sin(2x) = 2sin(x)cos(x). therefore, sin(x)cos(x) = (1/2)sin(2x)

OO
Answered by Olaitan O. Maths tutor

4314 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 8x^6 + 7x^3 -1 = 0


Turning points of the curve y = (9x^2 +1)/3x+2


Find both stationary points for y= 4x^(3)-3x^(2)-60x+24. Also find the nature of those points.


Differentiate y=ln(2x^2) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences