show that tan(x)/sec2(x) = (1/2)sin(2x)

tan(x)/sec2(x) Sec(x) = 1/cos(x), therefore 1/sec(x) = cos(x). also tan(x) = sin(x)/cos(x).using substitution, tan(x)/sec2(x) = (sin(x)/cos(x)) * cos2(x) = sin(x)cos(x). sin(x+y) = sin(x)cos(y) + cos(x)sin(y). since 2x = x+x, sin(2x) = 2sin(x)cos(x). therefore, sin(x)cos(x) = (1/2)sin(2x)

OO
Answered by Olaitan O. Maths tutor

4938 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I work out what integration method I should use to solve an integral?


In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M= 300e^-0. 5t


Core 1: Given that y = x^4 + x^2+3. Find dy/dx


Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning