A curve C has the following equation: x^3 + 3y - 4(x^3)*(y^3) a) Show that (1,1) lies on C b) Find dy/dx

a) Substituting the coordinate (1,1) into the left hand side of the equation for C we obtain: (13) + 3*1 - 4(13)(13) = 1 + 3 - 4 = 0 = The right hand side of the equation, hence the equation is satisfied, and therefore (1,1) lies on C.

b) Differentiating implicity we find: 
3x2 + 3dy/dx - 12x2y- 12x3y2dy/dx = 0
Rearranging yields:
3x2 - 12x2y3= (12x3y2 - 3)dy/dx

Hence dy/dx = (3x2 - 12x2y3/(12x3y2 - 3)
Which simplifies to 

dy/dx = x2(1 - 4y3)/(4x3y2 - 1)

(An alternative expression can be obtained be moving the terms not involving dy/dx to the right hand side)

HW
Answered by Harry W. Maths tutor

2903 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences