How do you differentiate (3x+cos(x))(2+4sin(3x))?

Here we have a product of two things, so we will be using the product rule of differentiation. This is: for y=u(x)v(x), where u(x) and v(x) are funtions of x, dy/dx = u'(x)v(x) + u(x)v'(x). So in this case let u(x) = 3x+cos(x) and let v(x) = 2+4sin(3x). We need to find u'(x). u'(x) = 3-sin(x) as we differentiate u(x). v'(x) = 12cos(3x) as we diferentiate v(x). Then using the product rule sated, dy/dx = (3-sin(x))(2+4sin(3x)) + (3x+cos(x))(12cos(3x)). 

JP
Answered by Jaisal P. Maths tutor

5620 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)


Integrate e^x sinx


The curve, C has equation y = 2x^2 +5x +k. The minimum value of C is -3/4. Find the value of k.


Find the stationary points of the curve y (x)= 1/3x^3 - 5/2x^2 + 4x and classify them.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning