How do you differentiate (3x+cos(x))(2+4sin(3x))?

Here we have a product of two things, so we will be using the product rule of differentiation. This is: for y=u(x)v(x), where u(x) and v(x) are funtions of x, dy/dx = u'(x)v(x) + u(x)v'(x). So in this case let u(x) = 3x+cos(x) and let v(x) = 2+4sin(3x). We need to find u'(x). u'(x) = 3-sin(x) as we differentiate u(x). v'(x) = 12cos(3x) as we diferentiate v(x). Then using the product rule sated, dy/dx = (3-sin(x))(2+4sin(3x)) + (3x+cos(x))(12cos(3x)). 

JP
Answered by Jaisal P. Maths tutor

5660 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using Discriminants to Find the Number of Roots of a Quadratic Curve


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


Use integration by parts to find ∫ (x^2)sin(x) dx. (A good example of having to use the by parts formula twice.)


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning