Q2. Calculate the pH of the solution formed after 50.0 cm^3 of 0.0108 mol/dm^3 aqueous sodium hydroxide are added to beaker B. Give your answer to 2 decimal places

A2.   First thing to work out is the moles of NaOH added, since moles = concentration x volume, = 0.0108 mol/dm^3 x 50ml, but need volume to be in units of Litres to match with the units of dm^3 so the formula becomes 0.0108 mol/dm^3 x (50 x 10^-3)L to give the number of moles of NaOH = 5.4 x 10^-4    Since we know that beaker B also contains 0.0125 mol/dm^3 of nitric acid in 100ml, and so the OH- will react with the H+, we have to account for the number of moles of HNO3    So, (0.0125 x (100 x 10^-3)) - (5.4 x 10^-4) = (moles of H+) - (moles of OH-) = moles of excess H+ = 7.1 x 10^-4   To get [H+] we need to do moles/volume = 7.1 x 10^-4 mol/dm^3 / 150 x 10^-3 L = 4.73 x 10^-3   pH = -log[H+] = 2.32

TD
Answered by Tutor51285 D. Chemistry tutor

13097 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is the standard enthalpy change of formation and how does it differ from the standard enthalpy change of reaction?


What is hybridisation and how can it be used to explain the shapes of molecules?


Explain the shapes of the molecules NH3 and AlCl3 (using diagrams)


Molecules of hydrogen chloride, HCl, and molecules of fluorine, F2, contain the same number of electrons. Hydrogen chloride boils at –85 °C and fluorine boils at –188 °C.Explain why there is a difference in the boiling points of HCl and F2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning