A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.

To find how much time the ball spends above 29.4m, we need to find the times at which the ball is at 29.4m above its starting point, and then calculate the difference between these times. Acceleration is constant, so we can use the equations of motion. First write out which quantities we know and what we want to find:      u = 24.5 m/s     v =      a = -9.8m/s2     s = 29.4m     t = ?              We want an equation involving u, a, s and t.               Use  s = ut + 0.5at2    -> (substitute known values) -> 29.4 = 24.5t + 0.5(-9.8)t2                     ->   29.4 = 24.5t - 4.9t2              ->     (rearrange so that we have a quadratic equal to zero)      ->   4.9t2 - 24.5t + 29.4 = 0       -> (multiply everything by 10 to get rid of the decimals) ->  49t2 - 245t + 294 = 0                     ->  (divide everything by 49)  ->   t- 5t + 6 = 0                              ->  (factorise)  ->  ( t - 2 )( t - 3 ) = 0               ->     t = 2  or  t = 3 .                Therefore time above 29.4m is given by:   time = 3 - 2 = 1 second.

SB
Answered by Sherry B. Maths tutor

11251 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Compute the indefinite integral of x^8 ln(3x)dx


If z1 = 3+2i, z2= 4-i, z3=1+i, find and simplify the following: a) z1 + z2, b) z2 x z3, c)z2* (complex conugate of z2), d) z2/z3.


The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.


Solve the following simultaneous equations: y-3x+2=0, y^2-x-6x^2=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences