A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.

A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.  QUESTION: a. Show dv/dt = g - lv b. If initiail speed of stone is u, find an an expression for v at time, t. ANSWER a. F = ma, and a = dv/dt. So m*dv/dt = mg - mlv. Therefore, dv/dt = g - lv b. On integration, -1/l ln (g-lv) = t + c, Substituting in the boundary conditions, the integration constant is found to be c = -1/l ln(g - lu) So ln (g - lv) = -lt + ln (g-lu) (g - lv)/(g - lu) = e^ -lt g - lv = (g - lu)e^ - lt v = 1/l (g - (g - lu)e^ -lt)

RH
Answered by Ronan H. Maths tutor

4989 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.


Find the coefficient of x^4 in the expansion of: x(2x^2 - 3x + 1)(3x^2 + x - 4)


How do I add up the integers from 1 to 1000 without going insane?


Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences