Find the values of x where the curve y = 8 -4x-2x^2 crosses the x-axis.

A curve crosses the x-axis when y=0, if we put that into the equation above we get the quadratic equation 0=8-4x-2x2. The solutions to this equation are the values of x where y=0, which is the same as saying the values of x where the curve crosses the y axis, so the solutions to this equation are our answers. We can solve the equation using the quadratic formula, x=(-b+√(b2-4ac))/2a or x=(-b-√(b2-4ac))/2a. In this equation a=-2, b=-4, c=8, which gives x=(-(-4)+√((-4)2-4*(-2)8))/2(-2) or (-(-4)+√((-4)2-4*(-2)8))/2(-2). Simplified this is x=(4+√80)/-2 or x=(4-√80)/-4, which again simplifies to x=-1+√5 or x=-1-√5. So these are values of x where the curve y=8-4x-2x^2 crosses the x-axis.

HW
Answered by Hannah W. Maths tutor

7125 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For rectangles of area 100 m^2 what is the perimeter of the rectangle with the smallest perimeter?


How do I know when to integrate using by parts or by substitution?


Given a table showing grouped data and the frequency of each class, find the median Q2


How to find and classify stationary points (maximum point, minimum point or turning points) of curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning