Find the values of x where the curve y = 8 -4x-2x^2 crosses the x-axis.

A curve crosses the x-axis when y=0, if we put that into the equation above we get the quadratic equation 0=8-4x-2x2. The solutions to this equation are the values of x where y=0, which is the same as saying the values of x where the curve crosses the y axis, so the solutions to this equation are our answers. We can solve the equation using the quadratic formula, x=(-b+√(b2-4ac))/2a or x=(-b-√(b2-4ac))/2a. In this equation a=-2, b=-4, c=8, which gives x=(-(-4)+√((-4)2-4*(-2)8))/2(-2) or (-(-4)+√((-4)2-4*(-2)8))/2(-2). Simplified this is x=(4+√80)/-2 or x=(4-√80)/-4, which again simplifies to x=-1+√5 or x=-1-√5. So these are values of x where the curve y=8-4x-2x^2 crosses the x-axis.

HW
Answered by Hannah W. Maths tutor

6863 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the "complete the square" method, solve the following x^2 +4x - 21 =0


What are the roots of 3x^2 + 13x + 4 ?


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


(https://qualifications.pearson.com/content/dam/pdf/A-Level/Mathematics/2013/Exam-materials/6666_01_que_20160624.pdf) Question 6.(i)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences