Prove that (4x–5)^2 – 5x(3x – 8) is positive for all values of x.

To begin we need to simplify the expression. First we multiply out (4x–5)^2 to get 16x2+40x+25 and then we multiply out 5x(3x – 8) to get 15x2-40x. This makes the whole expression 16x2+40x+25-(15x2-40x), which equals 16x2+40x+25-15x2+40x. This simplifies to x2+25. We know that x2 is positive for all values of x, and so x2+25 must also be positive for all values of x.

HW
Answered by Hannah W. Maths tutor

9433 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these simultaneous questions: 2y+x =8 and y-2x = -1.


Solve the following simultaneous equations: 3a + 2b = 36 equation ( 1), and 5a + 4b = 64 equation (2)


Integrate y=3x+2 with respect to x between the bounds x=5 and x=0, and state the physical significance of this.


Solve the simultaneous equations: 2x + y = 18, x - y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning