Prove that (4x–5)^2 – 5x(3x – 8) is positive for all values of x.

To begin we need to simplify the expression. First we multiply out (4x–5)^2 to get 16x2+40x+25 and then we multiply out 5x(3x – 8) to get 15x2-40x. This makes the whole expression 16x2+40x+25-(15x2-40x), which equals 16x2+40x+25-15x2+40x. This simplifies to x2+25. We know that x2 is positive for all values of x, and so x2+25 must also be positive for all values of x.

HW
Answered by Hannah W. Maths tutor

9716 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (b-4)(b+5)


Make x the subject of 5(x-3) = y(4-3x)


Samuel had 3 piles of coins, I, II and III. Altogether there was 72p. Pile II had twice as much as pile I. Pile III had three times as much as pile II. How much money was in Pile III?


y is inversely proportional to d^2. When d = 10, y = 4. d is directly proportional to x^2. When x = 2, d = 24. Find a formula for y in terms of x. Give your answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning