Explain the flow of ions during an action potential of a typical neurone

There are numerous ionic fluxes during an action potential, which involves depolarisation, repolarisation and hyperpolarsation. During depolarisation, voltage-gated sodium ion channels open. In turn, sodium ions flow into the cell, down an electrochemical gradient, resulting in a inward current. This is the "upstroke" of the action potential, which depolarises the cell to a more positive membrane potential, due to the influx of positively charged sodium ions.

After depolarisation has occured, voltage-gated sodium ion channels close and voltage-gated potassium ion channels open. This results in an efflux of potassium ions from the cell. The efflux of positively charged potassium ions results in repolarisation, as the cell returns to a more negative membrane potential. The events of repolarisation tend to hyperpolarise the cell, as the membrane potential becomes more negative than the original resting potential. During hyperpolarisation, another action potential is prevented from occuring. In the refractory period, the sodium-potassium exchanger actively pumps sodium out of the cell and potassium into the cell; this resets the resting membrane potential and enables another action potential to take place.

AS
Answered by Annie S. Biology tutor

4958 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Explain why an artery may be described as an organ.


Haemophilia is a disease that affects blood clotting. People with haemophilia are sometimes given a protein called factor VIII. Factor VIII is an enzyme that is involved in the process of blood clotting. Explain how a change in the primary structure of f


How does blood flow through the heart and body?


Why is O2 so important for respiration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning