Explain the flow of ions during an action potential of a typical neurone

There are numerous ionic fluxes during an action potential, which involves depolarisation, repolarisation and hyperpolarsation. During depolarisation, voltage-gated sodium ion channels open. In turn, sodium ions flow into the cell, down an electrochemical gradient, resulting in a inward current. This is the "upstroke" of the action potential, which depolarises the cell to a more positive membrane potential, due to the influx of positively charged sodium ions.

After depolarisation has occured, voltage-gated sodium ion channels close and voltage-gated potassium ion channels open. This results in an efflux of potassium ions from the cell. The efflux of positively charged potassium ions results in repolarisation, as the cell returns to a more negative membrane potential. The events of repolarisation tend to hyperpolarise the cell, as the membrane potential becomes more negative than the original resting potential. During hyperpolarisation, another action potential is prevented from occuring. In the refractory period, the sodium-potassium exchanger actively pumps sodium out of the cell and potassium into the cell; this resets the resting membrane potential and enables another action potential to take place.

Answered by Annie S. Biology tutor

2771 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

What are the similarities/differences between neuromuscular junctions and cholinergic synapses?


Outline the typical immune response triggered when a pathogen infects the body


Contrast facilitated diffusion and active transport


Explain how changes in temperature and pH affect the rate of an enzyme-catalysed reaction. Give appropriate diagrams to illustrate your answer. [6]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy