What is Taylor Series

 

Technical Definition: A way to approximate (very) smooth functions (for which derivatives up to high orders exist and are continuous)

 

Simple Definition: Taylor series is the infinite sum of all the terms for a specific function which is a very close approximation to the real value of the function. 

Mathematical definition:

f(x) = f(a) + (f'(a)(x-a))/1! + (f''(x)(x-a)2)/2! + (f'''(x)(x-a)3)/3! + ... + 

 

Why do we have an infinite number of terms?:

The more terms we include in our approximated function, the better the approximation to the real value. For a graph this means that it will represent the actual graph function more.

 

Special Case (Maclaurin Series):

Maclaurin series is based of the Taylor Series, but we choose the function to be around origin (value = 0) rather than anywhere else.

 

 

 

Advantage of using Taylor/Maclaurin series

its allows for incredibly accurate approximations of a function (depending on the number of terms included)

Provide for integration and differentiation of functions to arrive at representations of other function

 

Disadvantage of using Taylor/Maclaurin series

some calculations become tedious or the series doesn’t converge quickly

many of the functions are limited to a certain domain given a specific range for convergence (some Taylor series are only valid for a small domain)

AC
Answered by Andrew C. Maths tutor

10495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0


Integrate lnx


Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning