A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.

We shall differentiate each term in the equation with respect to x.

dy/dx (x2) = 2x

dy/dx (2y2) = 4y dy/dx

dy/dx (3x) = 3

So we now have the equation 2x + 4y dy/dx =3

We now have to rearrange to get in the form dy/dx

dy/dx= (3-2x)/4y

KP
Answered by Kate P. Maths tutor

4623 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate the function (x^2 +5/x + 3) with respect to x


Differentiate cos(2x)/(x) with respect to x


Find the equation of the tangent to the curve y=x^2+5x+2 at the point where x=5


A new sports car accelerates using rockets at 5m/s for 30 seconds from some traffic lights and then decelerate for 45 seconds to a stop.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning