A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.

We shall differentiate each term in the equation with respect to x.

dy/dx (x2) = 2x

dy/dx (2y2) = 4y dy/dx

dy/dx (3x) = 3

So we now have the equation 2x + 4y dy/dx =3

We now have to rearrange to get in the form dy/dx

dy/dx= (3-2x)/4y

KP
Answered by Kate P. Maths tutor

4620 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point P lies on a curve with equation: x=(4y-sin2y)^2. (i) Given P has coordinates (x, pi/2) find x. (ii) The tangent to the curve at P cuts the y-axis at the point A. Use calculus to find the coordinates of the point A.


Find the indefinite integral of 3x - x^(3/2) dx


Integrate ln(e^x)


Find the exact solution, in its simplest form, to the equation ln(4y + 7) = 3 + ln(2 – y) (Core Maths 3 Style Question)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning