A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.

We shall differentiate each term in the equation with respect to x.

dy/dx (x2) = 2x

dy/dx (2y2) = 4y dy/dx

dy/dx (3x) = 3

So we now have the equation 2x + 4y dy/dx =3

We now have to rearrange to get in the form dy/dx

dy/dx= (3-2x)/4y

KP
Answered by Kate P. Maths tutor

4511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


Why is the differential of a constant zero?


Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning