Integration by parts: Integrate the expression x.ln(x) between 1 and 2.

Let $ denote the integral symbol, as I am limited here by my keyboard.

Recall the formula for integration by parts:

$ u.(dv/dx) dx = uv - $ u(dv/dx) dx

So to find $pi0x.sin(x) dx, we must allocate x and sin(x) to u and (dv/dx). Integrating sin(x) is simpler than integrating x, so let x = u and sin(x) = (dv/dx). 

From the formula, we also need to know v and (du/dx), which we can find by integrating (dv/dx) and differetiating u. So:

(du/dx) = (d/dx)x = x

v=$(dv/dx)dx = $sin(x) dx = -cos(x)

So now we have:

$pi0x.sin(x) dx = [x.-cos(x)]pi0 - $pi0-cos(x) dx

= (pi.1 - 0) + $pi0cos(x) dx

=pi + [sin(x)]pi0 

=pi + (0 -0)

= pi.

RH
Answered by Rebecca H. Maths tutor

3345 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where does integration by parts come from?


What is the area under the graph of (x^2)*sin(x) between 0 and pi


Sketch the line y=x^2-4x+3. Be sure to clearly show all the points where the line crosses the coordinate axis and the stationary points


Differentiate xcos(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning