Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.

dx=du/6 => (u-5)/6=x So the integral is now (2((u-5)/6)-3)(u^1/2) du/6 Which through simplifying becomes (1/36)(2u-28)(u^1/2)du = (1/36)(2u^3/2 -28u^1/2)du After integrating becomes (1/36)(4(u^5/2)/5 -56(u^3/2)/3) Bounded between u=11 and u=8 by the substitution After evaluating we reach our final answer of -2.2889 to 4dp

JT
Answered by Joseph T. Maths tutor

4175 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


How do I remember what trig functions differentiate to?


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning