Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.

dx=du/6 => (u-5)/6=x So the integral is now (2((u-5)/6)-3)(u^1/2) du/6 Which through simplifying becomes (1/36)(2u-28)(u^1/2)du = (1/36)(2u^3/2 -28u^1/2)du After integrating becomes (1/36)(4(u^5/2)/5 -56(u^3/2)/3) Bounded between u=11 and u=8 by the substitution After evaluating we reach our final answer of -2.2889 to 4dp

JT
Answered by Joseph T. Maths tutor

4154 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative (dy/dx) of the curve equation x^2 -y^2 +y = 1.


Given y = 2x^2 + 3x + 2 find dy/dx


How do you simplify something of the form Acos(x) + Bsin(x) ?


What are the necessary conditions for a random variable to have a binomial distribution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning