Integrate the following function: f(x) = 8x^3 + 1/x + 5

We can see that the function is a sum of three terms so we can deal with each term separately and add them up. The term 8x3 and 5 are relatively straightforward and follow the standard rules for integration: "raise the power by 1 and divide by the new power". Therefore 8x^3 becomes 8/4 x4 = 2x4 and the 5 becomes 5x. Then we look at the 1/x term. This is slightly more complicated as it we cannot follow that rule since, remembering 1/x is the same as x-1, this would give us x0/0 which can't be true. Instead, we know that 1/x integrates to ln(x) (the natural logarithm). Finally, as with all indefinite integratals (integration without limits) we have to add a constant. The final answer is therefore 2x4 + ln(x) + 5x + c

EJ
Answered by Eleanor J. Maths tutor

3669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you integrate ln(x) with respect to x?


The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


How can we solve a two-equation, two-unknown values?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning