Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.

f'(x)=9x2​+4x, and f''(x)=18x+4 (derivatives) 

f'(x)=0 at x=0 or x=-4/9

when x=0 f''(x)>0 therefore a minimum value, when x=-4/9 f''(x)<0 and thus a maximum value. 

SO
Answered by Sieff O. Maths tutor

3711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


How do I find a stationary point? And how do I determine whether it is a maximum or minimum point?


Express 2 ln(3) + ln(11) as a single natural logarithm


Differentiate sin(x^3) with respect to y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences