Differentiate x^(1/2)ln(3x) with respect to x.

First we notice that this is a product of two functions of x, so we are going to use the product rule. Recall (uv)'(x)=u'(x)v(x)+v'(x)u(x). Let u(x)=x^(1/2) and v(x)=ln(3x). We need to find u'(x) and v'(x). We have that u'(x)=(1/2)x^(-1/2) by simple differentiation. Also v'(x)=3/3x=1/x by applying the chain rule. Therefore (uv)'(x)=(1/2)x^(-1/2)*ln(3x)+(1/x)*x^(1/2)=(1/2)x^(-1/2)ln(3x)+x^(-1/2)=x^(-1/2)((1/2)ln(3x)+1), simplifying it down to its simplest form.

AR
Answered by Aidan R. Maths tutor

10807 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.


Given the function f(x)=ax^2+bx+c, we are given that it has x-intercepts at (0,0) and (8,0) and a tangent with slope=16 at the point x=2. Find the value of a,b, and c.


By using the substitution, x = 2sin(y) find the exact value of integral sqrt(1/3(4-x^2)) dx with limits 0 and 1.


How can the y=sin(x) graph be manipulated?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning