Differentiate x^(1/2)ln(3x) with respect to x.

First we notice that this is a product of two functions of x, so we are going to use the product rule. Recall (uv)'(x)=u'(x)v(x)+v'(x)u(x). Let u(x)=x^(1/2) and v(x)=ln(3x). We need to find u'(x) and v'(x). We have that u'(x)=(1/2)x^(-1/2) by simple differentiation. Also v'(x)=3/3x=1/x by applying the chain rule. Therefore (uv)'(x)=(1/2)x^(-1/2)*ln(3x)+(1/x)*x^(1/2)=(1/2)x^(-1/2)ln(3x)+x^(-1/2)=x^(-1/2)((1/2)ln(3x)+1), simplifying it down to its simplest form.

AR
Answered by Aidan R. Maths tutor

10914 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate with respect to x the function f(x)= xln(x)


Solve the inequality |x - 2sqrt(2)| > |x - 4sqrt(2)|.


How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning