Differentiate x^(1/2)ln(3x) with respect to x.

First we notice that this is a product of two functions of x, so we are going to use the product rule. Recall (uv)'(x)=u'(x)v(x)+v'(x)u(x). Let u(x)=x^(1/2) and v(x)=ln(3x). We need to find u'(x) and v'(x). We have that u'(x)=(1/2)x^(-1/2) by simple differentiation. Also v'(x)=3/3x=1/x by applying the chain rule. Therefore (uv)'(x)=(1/2)x^(-1/2)*ln(3x)+(1/x)*x^(1/2)=(1/2)x^(-1/2)ln(3x)+x^(-1/2)=x^(-1/2)((1/2)ln(3x)+1), simplifying it down to its simplest form.

AR
Answered by Aidan R. Maths tutor

10909 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = (3x^3+2x+7)/x^(1/2)


Simplify (5-root3)/(5+root3)


Can you prove to me why cos^2(X) + sin^2(X) = 1?


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning