Solve the differential equation: dy/dx = tan^3(x)sec^2(x)

dy/dx = tan3(x)sec2(x)

Integrate both sides ==> ∫dy= ∫ tan3(x)sec2(x) dx

Use the substitution u=tan(x)

And by differentiation du/dx = sec2(x) , which leads to dx = du/sec2(x)

==> and subbing dx into the equation leads to the simplification of y = ∫ u3 du

Integrate with respect to u to get y = u4/4 + c

Then sub u back into the equation to find y = tan4(x) + c

RS
Answered by Ryan S. Maths tutor

11449 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


How do you do simple integration?


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


A circle has the equation x^2 + y^2 - 4x + 10y - 115 = 0. Express the equation in the form (x - a)^2 + (y - b)^2 = k, and find the centre and radius of the circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences