Solve the differential equation: dy/dx = tan^3(x)sec^2(x)

dy/dx = tan3(x)sec2(x)

Integrate both sides ==> ∫dy= ∫ tan3(x)sec2(x) dx

Use the substitution u=tan(x)

And by differentiation du/dx = sec2(x) , which leads to dx = du/sec2(x)

==> and subbing dx into the equation leads to the simplification of y = ∫ u3 du

Integrate with respect to u to get y = u4/4 + c

Then sub u back into the equation to find y = tan4(x) + c

RS
Answered by Ryan S. Maths tutor

11817 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


Given that y = exp(2x) * (x^2 +1)^(5/2), what is dy/dx when x is 0?


Solve the simultaneous equations: x^2 + y^2 = 10 and x + 2y = 5


Differentiate x^2 + xy + y^2 =1 implicitly.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning