Solve the differential equation: dy/dx = tan^3(x)sec^2(x)

dy/dx = tan3(x)sec2(x)

Integrate both sides ==> ∫dy= ∫ tan3(x)sec2(x) dx

Use the substitution u=tan(x)

And by differentiation du/dx = sec2(x) , which leads to dx = du/sec2(x)

==> and subbing dx into the equation leads to the simplification of y = ∫ u3 du

Integrate with respect to u to get y = u4/4 + c

Then sub u back into the equation to find y = tan4(x) + c

RS
Answered by Ryan S. Maths tutor

11584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (5x + 4)/(x +2)(x - 1) in partial fractions.


If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant


Use the Chain Rule to differentiate the following equation: y=e^(3-2x)


Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences