Show clearly that (3√3)^2 = 27

Show clearly that (3√3)2 = 27

First of all, the question looks overfacing due to the surds, I can assure you that surds are not scary, they simply act as a means of clearing up messy numbers such as 1.73205 08075 68877 29352 74463... (carries on for a billion digits) which can be simply written as √3! 

So, how would we work out (3√3)without using a calculator? Well, luckily the question tells us that the answer we need to find is 27, so we can't go far wrong within these parametres. 

First of all, (3√3)2  is a tidy and mathematical way of writing 3√3 x 3√3.

A surd is not an equation, it is just a tidy way of writing a messy number. 

 Remember the rule of surds:

√(a x b) is the same as √a x √b... 

3√3 is a tidy, surdy way of writing √3x √3. Which is the same as √9 x √3... √(9 x 3).... which can also be written as √27. 

so, what we have to show is that √272= 27. 

√27 x √27= 27, because, by timesing together two like surds, we can get rid of the root sign because, in general, multiplying two like surds gives a rational number... (√a x √a= a) (2√a x √a=2a) 

Hence, we have just proved that (3√3)2= 27 simply by referring to the basic rules of surds :)

EC
Answered by Eleanor C. Maths tutor

14442 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 2x+3y=17 and 10x-y=5.


Dipen and Nisha are planning their wedding reception. Nisha says, “I want to invite 70 guests.” Dipen says, “If we invite one-fifth fewer guests, we will save more than £500” Is Dipen correct? (Taken from Nov 2014 AQA Unit 2)


what is the largest stick can you fit into a cylinder, if the radius is 3cm and the length is 24cm. To 2d.p


Samuel had 3 piles of coins, I, II and III. Altogether there was 72p. Pile II had twice as much as pile I. Pile III had three times as much as pile II. How much money was in Pile III?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning