Given the function y=(x+1)(x-2)^2 find i) dy/dx ii) Stationary points and determine their nature

Here we have a function made from the product of two functions, so we canuse the product differenciation rule.

y=uv  =>  dy/dx=udv/dx + vdu/dx

Therefore dy/dy=(x-2)^2 + 2(x-2)(x+1)

Stationary points occur when the gradient is zero, we solve for (x-2)^2 + 2(x-2)(x+1)=0 which gives (0,4), (2,0)

Solving for nature of stationary point we find the second derivative d^2y/dx^2=6x-6

When x=0 we get a maximum, when x=2 we get a minimum point.

RB
Answered by Russell B. Maths tutor

4735 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate e^x cos x


How does integration work?


A uniform ladder of mass 5 kg sits upon a smooth wall and atop a rough floor. The floor and wall are perpendicular. Draw a free body diagram for the ladder (you do not need to calculate any forces).


Given that A(sin θ + cos θ) + B(cos θ − sin θ) ≡ 4 sin θ, find the values of the constants A and B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences