Given the function y=(x+1)(x-2)^2 find i) dy/dx ii) Stationary points and determine their nature

Here we have a function made from the product of two functions, so we canuse the product differenciation rule.

y=uv  =>  dy/dx=udv/dx + vdu/dx

Therefore dy/dy=(x-2)^2 + 2(x-2)(x+1)

Stationary points occur when the gradient is zero, we solve for (x-2)^2 + 2(x-2)(x+1)=0 which gives (0,4), (2,0)

Solving for nature of stationary point we find the second derivative d^2y/dx^2=6x-6

When x=0 we get a maximum, when x=2 we get a minimum point.

RB
Answered by Russell B. Maths tutor

5157 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area between the positive x axis and the line given by y=-(x^2)+2x


In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)


You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning