Given the function y=(x+1)(x-2)^2 find i) dy/dx ii) Stationary points and determine their nature

Here we have a function made from the product of two functions, so we canuse the product differenciation rule.

y=uv  =>  dy/dx=udv/dx + vdu/dx

Therefore dy/dy=(x-2)^2 + 2(x-2)(x+1)

Stationary points occur when the gradient is zero, we solve for (x-2)^2 + 2(x-2)(x+1)=0 which gives (0,4), (2,0)

Solving for nature of stationary point we find the second derivative d^2y/dx^2=6x-6

When x=0 we get a maximum, when x=2 we get a minimum point.

RB
Answered by Russell B. Maths tutor

5221 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

June 2008 C1 Paper Differentiation Question


An ellipse has the equation (x^2)/4 + (y^2)/9 = 1. Find the equation of the tangent at (-6/5 , 12/5)


How come x^2 = 25 has 2 solutions but x=root(25) only has one? Aren't they the same thing?


If the function f is defined as f= 1-2x^3 find the inverse f^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning