Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx

 y = ln(2x+3 / 7x^3 +1)

d/dx(2x+3 / 7x^3 + 1) by quotient rule which is(v.du/dx - u.dv/dx) / v^2  where u=2x+3 and v=7x^3 +1   gives (-27x^3 -63x^2 +2) / (7x^3 +1)^2

so d/dx(ln(2x+3 / 7x^3 +1) = ( (-27x^3 -63x^2 +2) / (7x^3 +1)^2 ) / (2x+3)/(7x^3 +1)

= ((-27x^3 -63x^2 +2) / (7x^3 +1) ) / (2x+3)

= (-27x^3 -63x^2 +2) / (7x^3 +1).(2x+3)

which is the final solution, since it cannot be simplified further.

SB
Answered by Samuel B. Maths tutor

3717 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of y = (x-7)(x-3)^2.


Find the integral of the following equation: y = cos^2(x)


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


Express 9^(3x+)1 in the form 3^y giving y in the form of ax+b where a and b are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences