Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx

 y = ln(2x+3 / 7x^3 +1)

d/dx(2x+3 / 7x^3 + 1) by quotient rule which is(v.du/dx - u.dv/dx) / v^2  where u=2x+3 and v=7x^3 +1   gives (-27x^3 -63x^2 +2) / (7x^3 +1)^2

so d/dx(ln(2x+3 / 7x^3 +1) = ( (-27x^3 -63x^2 +2) / (7x^3 +1)^2 ) / (2x+3)/(7x^3 +1)

= ((-27x^3 -63x^2 +2) / (7x^3 +1) ) / (2x+3)

= (-27x^3 -63x^2 +2) / (7x^3 +1).(2x+3)

which is the final solution, since it cannot be simplified further.

SB
Answered by Samuel B. Maths tutor

3768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = 5x^3 - 2x^2 + 2, what is dy/dx?


A curve C is defined by the equation sin3y + 3y*e^(-2x) + 2x^2 = 5, find dy/dx


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


Why is my answer incorrect?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning