Differentiate y=x^3*(x^2+1)

As this is a product of two functions it is necessary to use the product rule for differentiation. Therefore one of the functions must labeled v and the other u. i.e. u=x^3 and v=(x^2+1). It is then necessary to differentiate each of those functions seperately so that du/dx=3x^2 and dv/dx=2x. The final step is to multiply v by du/dx and multiply v by du/dx then add the two together as follows: dy/dx=2x^4+3x^2*(x^2+1)

BJ
Answered by Bevan J. Maths tutor

3758 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation: dy/dx = 6x^2 + 4x + 9


How do I find the inverse of a 2x2 matrix?


A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


differentiate ln( x^2 )


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning