How do you integrate x* (exp(x))??

The easiest method to use in this incidence is integratation by parts.

So let u=x and dv/dx=exp(x). Therefore du/dx=1 and v=exp(x).

Then we use the formula where integral(udu/dx)=uv-integral(v*du/dx).

So integral(xexp(x))=xexp(x)-integral(exp(x)*1)

=x*exp(x)-integral(exp(x))

=x*exp(x)-exp(x)+c

Don't forget the +c

HJ
Answered by Harmony J. Maths tutor

9569 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate?


How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3


integrate 5x^2 + x + 2 and find the value of c if the curve lies on the coordinates (1,3)


The point P lies on a curve with equation: x=(4y-sin2y)^2. (i) Given P has coordinates (x, pi/2) find x. (ii) The tangent to the curve at P cuts the y-axis at the point A. Use calculus to find the coordinates of the point A.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences