How do you integrate x* (exp(x))??

The easiest method to use in this incidence is integratation by parts.

So let u=x and dv/dx=exp(x). Therefore du/dx=1 and v=exp(x).

Then we use the formula where integral(udu/dx)=uv-integral(v*du/dx).

So integral(xexp(x))=xexp(x)-integral(exp(x)*1)

=x*exp(x)-integral(exp(x))

=x*exp(x)-exp(x)+c

Don't forget the +c

HJ
Answered by Harmony J. Maths tutor

10539 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2+2 is 4, minus 1, that's what?


given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)


(a) Express (1+4*sqrt(7))/(5+2*sqrt(7)) in the form a+b*sqrt(7), where a and b are integers. (b) Then solve the equation x*(9*sqrt(5)-2*sqrt(45))=sqrt(80).


Two points have coordinates (1,-6) and (-2,3). Find the equation of the line which joins them, and their midpoint.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning