The polynomial p(x) is given: p(x)=x^3+2x^2-5x-6, express p(x) as the product of three linear factors

p(x)=x3+2x2-5x-6

      =x(x2+2x-5)-6

      =x(x2+2x+1-6)-6 as we know (x+1)2=x2+2x+1,5 can be expressed 1-6

      =x[(x+1)2-6]-6

      =x(x+1)2-6x-6

      =x(x+1)2-6(x+1)

      =(x+1)[x(x+1)-6]

      =(x+1)(x2+x-6) here, -6 can be expressed as -2*3, and -2+3=1 

      =(x+1)(x+3)(x-2)

 

JB
Answered by Jingyi B. Maths tutor

14011 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that x^2 +6x+ 11 can be written as (x+p)^2 +q


Integrate the function xsin(4x^2) with respect to x, using the integration by substitution method.


Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.


Why is the derivative of sin(x), cos(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning