Find the vertex coordinates of parabola y = 2x^2 - 4x + 1

In this exercise I have to find the coordinates of the vertex of the parabola. Given the general equation y= ax^2 + bx + c , the value of a is 2, the value of b is -4 and the value of c is 1.

In order to compute the x-coordinate, I apply the formula –b/2a and, by substituting the values written before, I have that Vx = -(-4)/(2*2) = 4/4 = 1.

For the y-coordinate, I apply the formula –Δ/4a, where Δ = b^2 – 4ac. By substituting the parameters value into Δ, I obtain Δ = (-4)^2 – 421 = 16 -8 = 8. By plugging it into the general formule, I have Vy = - 8/(4*2) = - 8/8 = - 1. The vertex coordinates are thus (1; - 1).

MB
Answered by Martina B. Maths tutor

11590 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(i) Prove sin(θ)/cos(θ) + cos(θ)/sin(θ) = 2cosec(2θ) , (ii) draw draph of y = 2cosec(2θ) for 0<θ< 360°, (iii) solve to 1 d.p. : sin(θ)/cos(θ) + cos(θ)/sin(θ) = 3.


Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.


integrate the following: 2x^4 - 4/sqrt(x) +3 with respect to x


The quadratic equation (k+1)x^2+12x+(k-4)=0 has real roots. (a) Show that k^2-3k-40<=0. (b) Hence find the possible values of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences