Find the vertex coordinates of parabola y = 2x^2 - 4x + 1

In this exercise I have to find the coordinates of the vertex of the parabola. Given the general equation y= ax^2 + bx + c , the value of a is 2, the value of b is -4 and the value of c is 1.

In order to compute the x-coordinate, I apply the formula –b/2a and, by substituting the values written before, I have that Vx = -(-4)/(2*2) = 4/4 = 1.

For the y-coordinate, I apply the formula –Δ/4a, where Δ = b^2 – 4ac. By substituting the parameters value into Δ, I obtain Δ = (-4)^2 – 421 = 16 -8 = 8. By plugging it into the general formule, I have Vy = - 8/(4*2) = - 8/8 = - 1. The vertex coordinates are thus (1; - 1).

MB
Answered by Martina B. Maths tutor

11677 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a logarithm?


How would you solve the inequality x^2-2x-8 >= 0?


What is the normal distribution and how do I use it?


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences