Write 0.319319... as a fraction in its lowest terms

x = 0.319319... As there are three numbers that are recurring, we multiply x by 1000. 1000x = 319.319319... Then we can remove the recurring part by subtracting x from 1000x. 999x = 319 x = 319/999. We note that gcd(319,999) = 1, where gcd is the greatest common denominator, so 319/999 is a fraction in its lowest term.

HL
Answered by Harry L. Maths tutor

3774 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A line has equation y=3x+4, state the gradient and the y-intercept


Given the two equations [1](3x + 4y = 23) and [2](2x + 3y = 16), find the values of x and y


How do you describe graph translations on x and y?


The circle c has equation x^2+y^2 = 1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning