Find the integral of x^2e^x

To solve this integral you should use the integration by parts formula, which is uv - integral of vu'. First let x^2 be u, therefore u'(the differential of x^2) = 2x, v' = e^x and therefore v (integral of e^x ) = e^x. Then put each of these values into the formula to get x^2e^x - (Integral of 2xe^x ). You then have to use the formula once again, setting u=2x , u' =2 , v' = e^x ,v= e^x, Substitue into formula to get, x^2e^x - (2xe^x - Integral of 2e^x) Which then simplifies to: x^2e^x -2xe^x -2e^x +C (not forgetting the constant of integration.

JG
Answered by Jade G. Maths tutor

5856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation (k+1)x^2 + (5k-3)x + 3k = 0 has equal roots, find the possible values of the real number k.


If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


How do I differentiate?


Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences