Find the integral of x^2e^x

To solve this integral you should use the integration by parts formula, which is uv - integral of vu'. First let x^2 be u, therefore u'(the differential of x^2) = 2x, v' = e^x and therefore v (integral of e^x ) = e^x. Then put each of these values into the formula to get x^2e^x - (Integral of 2xe^x ). You then have to use the formula once again, setting u=2x , u' =2 , v' = e^x ,v= e^x, Substitue into formula to get, x^2e^x - (2xe^x - Integral of 2e^x) Which then simplifies to: x^2e^x -2xe^x -2e^x +C (not forgetting the constant of integration.

JG
Answered by Jade G. Maths tutor

5681 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8


A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


Solve the complex equation z^3 + 32 + 32i(sqrt(3)) = 0


An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences