Find the integral of x^2e^x

To solve this integral you should use the integration by parts formula, which is uv - integral of vu'. First let x^2 be u, therefore u'(the differential of x^2) = 2x, v' = e^x and therefore v (integral of e^x ) = e^x. Then put each of these values into the formula to get x^2e^x - (Integral of 2xe^x ). You then have to use the formula once again, setting u=2x , u' =2 , v' = e^x ,v= e^x, Substitue into formula to get, x^2e^x - (2xe^x - Integral of 2e^x) Which then simplifies to: x^2e^x -2xe^x -2e^x +C (not forgetting the constant of integration.

JG
Answered by Jade G. Maths tutor

6002 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: 5x^3


Where does the circle equation come from?


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


Given that y = 16x + x^-1, find the two values of x for which dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences