Find the integral of x^2e^x

To solve this integral you should use the integration by parts formula, which is uv - integral of vu'. First let x^2 be u, therefore u'(the differential of x^2) = 2x, v' = e^x and therefore v (integral of e^x ) = e^x. Then put each of these values into the formula to get x^2e^x - (Integral of 2xe^x ). You then have to use the formula once again, setting u=2x , u' =2 , v' = e^x ,v= e^x, Substitue into formula to get, x^2e^x - (2xe^x - Integral of 2e^x) Which then simplifies to: x^2e^x -2xe^x -2e^x +C (not forgetting the constant of integration.

JG
Answered by Jade G. Maths tutor

6355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series


Find the x values for stationary points in the curve y=3sin(2x) for 0<x<180


The first three terms of an arithmetic series are p, 5p – 8, and 3p + 8 respectively. (a) Show that p=4 (b) Find the value of the 50th term in the series.


Solve the equation: 5^(2x+1) = 7, giving your answer correct to four decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning