How would I use implicit differentiation to differentiate functions such as: y=tan^-1(ax^2+b) in the form of dy/dx=.....?

First you must write the function in terms on something you know how to differentiate, for example... by taking tan (..) of both sides the equation becomes, tan(y)= ax+b. We then use implicit differentiation. So in our case, tan(y) goes too sec2(y)*dy/dx when differentiating y with respect to x on the left hand side of our re-aranged equation, using the chain rule. The right hand side is completed as normal with respect to x. Leaving us with dy/dx * sec2(y) = 2ax.  This gets us to a final answer of dy/dx = 2ax / (sec2(y)) = 2ax * cos2(y). Using the identity Sin2(x)+Cos2(x)=1 we can get the result in terms of x.

CS
Answered by Charles S. Maths tutor

5086 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: (12x^3)+ 4x + 7


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


differentiate y=e^2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences