Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.

For part i) we use the basic method of differentiation by considering each term individually. The first term, x3 goes to 3x2 by multiplying the original term by the original power, by 3, and then subtracting 1 from the original power. The second term goes to -6 as by differentiation when x is to the power 1 it disappears. The constant term 3 disappears as there is no x term to differentiate. This gives the answer, dy/dx =3x2-6. For part ii)  equate the answer to i) to the given value, i.e. 3x2-6=12. This simplifies to 3x2=18 by adding 6 to both sides and then again to x2=6 by dividing by 3. To get the value of x, take the square root of both sides, x=+sqrt(6) or x=-sqrt(6). You get two answers due to the nature of taking a sqaure root. 

SH
Answered by Samuel H. Maths tutor

4995 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


Differentiate (x^2)cos(3x) with respect to x


Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1


How would you integrate ln(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning