Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.

Begin with a diagram of the system, and definition of directions. Vertically up and clockwise rotations are positive. It must be recalled that in SHM force is proportional to displacement from equqilibrium. The key assumptions to make are: 

  1. the string is taught throughout the motion of the pendulum, 

  2. the string doesn't break thtroughout the motion of the pendulum,

  3. the initial angle of displacement from vertical is small, 

  4. there is no drag.

Take the angular displacement from veritcal to be x, and look at the forces on the particle. Assumptions 1) and 2) imply that there is no motion parrallel to the string, and hence the tension in the string must be equal magnitude to the weight of the mass parallel to the string. Hence the resultant force must act perpendicular to the direction of the string. Using trigonometry, this force (F) is: -mgsin(x). where g is the acceleration due to gravity. Now, in the small angle limit sin(x) ~ x so F=-mgsin(x) becomes F~-mgx. Since x is displacement from equilibrium, the system undergoes SHM.

LK
Answered by Luke K. Physics tutor

12384 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A projectile is launched from the ground at a speed of 40ms^-1 at an angle of 30 degrees to the horizontal, where does it land? What is the highest point the projectile reaches?


Why is potential energy negative? What does that even mean?


How would you calculate the moment of a Force on a rigid object?


An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning