how do you differentiate tan(x)

The differential of tan(x) is sec2(x), however knowing how dy/dx tan(x)=sec2(x) is very useful in differentiating other trigonometric functions. So, if we first employ the rule that tan(x)=sin(x)/cos(x), which we can then differentiate using the quotient rule. The quotient rule is (VU'-UV')/V2 where V' and U' are the differentials of the values of V and U.If we let U=sin(x) and V=cos(x), then U'=cos(x) and V'= -sin(x). The quotient rule is (VU'-UV')/V2, so if we sub in our values we get (cos(x)cos(x))-(sin(x)-sin(x))/ Cos2(x), simplified down we get (cos2(x) - (-sin2(x))/cos2(x). As we know, when you take away a negative, it becomes positive, so cos2(x) - (-sin2(x)) becomes cos2(x) + sin2(x), and fourtunately there is a trigonometric rule which states that cos2(x) + sin2(x) = 1. Using this we go back to our original equation and we have 1/cos2(x), which is equivalent to sec2(x), thus showing how we derive the differential of tan(x)

OS
Answered by Olukorede S. Maths tutor

13901 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]


Show that tan(x) + cot(x) = 2cosec(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning