how do you differentiate tan(x)

The differential of tan(x) is sec2(x), however knowing how dy/dx tan(x)=sec2(x) is very useful in differentiating other trigonometric functions. So, if we first employ the rule that tan(x)=sin(x)/cos(x), which we can then differentiate using the quotient rule. The quotient rule is (VU'-UV')/V2 where V' and U' are the differentials of the values of V and U.If we let U=sin(x) and V=cos(x), then U'=cos(x) and V'= -sin(x). The quotient rule is (VU'-UV')/V2, so if we sub in our values we get (cos(x)cos(x))-(sin(x)-sin(x))/ Cos2(x), simplified down we get (cos2(x) - (-sin2(x))/cos2(x). As we know, when you take away a negative, it becomes positive, so cos2(x) - (-sin2(x)) becomes cos2(x) + sin2(x), and fourtunately there is a trigonometric rule which states that cos2(x) + sin2(x) = 1. Using this we go back to our original equation and we have 1/cos2(x), which is equivalent to sec2(x), thus showing how we derive the differential of tan(x)

OS
Answered by Olukorede S. Maths tutor

13669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15


A stationary point of inflection implies a second derivative of 0, does this work the other way around?


Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


How can I find the normal to a curve at a given point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning