Using partial fractions find the integral of (15-17x)/((2+x) (1-3x)^2 )

First seperate the function into the form A/(2+x)  +   B/(1-3x)   +   C/(1-3x)2 . Find A B and C by equating the intergral to {A(1-3x)+B(1-3x)(2+x) +C(2+x)}/(2+x)(1-3x) . Cancelling the denominators gives an equation equal to 15-7x, and in terms of A, B and C. We then use comparison of the right and left hand sides to find A, B and C. By subsituting x=-2, x=1/3 and by comparing coefficients of x2 the values of A B and C can be found. Subbing these into the partial fraction equation(1st line) we can then intergrate this expression, using the fact that the intergral of 1/x is equal to ln(x). 

SB
Answered by Sean B. Maths tutor

4743 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of y= e^3x / 1+e^x using calculus.


Express 2/P(P-2) in Partial Fractions (C4)


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


How many solutions are there to the equation sin x = a, if 0<a<1 and 0<x<pi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences