Differentiate x^x

xx=ex*ln(x)

So  d/dx (xx) = d/dx (ex*ln(x))

By chain rule, we get     d/dx (xln(x))exln(x) 

Then by product rule we get      [ln(x)+1]exln(x)

MS
Answered by Matthew S. Maths tutor

4331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve the differential equation dy/dx=(3x*exp(4y))/(7+(2x^(2))^(2) when y = 0, x = 2


Solve the following equation by completing the square: x^2 + 6x + 3 = 0.


Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.


Find the integral of (cosx)*(sinx)^2 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning