i) Using implicit differentiation find dy/dx for x^2 + y^2 = 4 ii) At what points is the tangent to the curve parallel to the y axis iii) Given the line y=x+c only intersects the circle once find c given that c is positive.

I don't know how effectively I can communicate this answer via text without the whiteboard but I'll try.

i) First implicitly differentiate with respect to x: 2x + 2y * dy/dx = 0.

Rearranging gives dy/dx = -x/y. I would estimate this to be worth 3 marks

ii) The curve is parallel to the y axis when dx/dy = 0 or equivalently when dy/dx tends to inf. This can be seen by the denominator in our fraction for dy/dx tending to 0 => y=0. For y=0 we have two valid points from substituting back into the equation of the circle, solving the quadratic in x gives the two points (2,0) and (-2,0). (3 marks)

ii) The line will only intersect the circle once iff at the intersection point the value of dy/dx matches for both the line and the circle (A diagram would help clear this up). dy/dx for the line is 1 and substituting that into our result found in i) it is found that y= -x. Substitute that result back into the equation of the cirlce and you find that x^2 = 2. This pair of equations has 2 solutions (sqrt(2), -sqrt(2)), (-sqrt(2), sqrt(2)). From a sketch you would be able to see that the second of these points must be chosen for a positive c and subsituting that point into the equation of a straight line you find that c = 2*sqrt(2). (5 marks)

JD
Answered by James D. Maths tutor

5013 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate expressions of form Ax^b where A and b are constants and x is a variable


Use integration by parts to find the integral of sin(x)*exp(x)


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


Find the stationary points of y = (x-7)(x-3)^2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning