How do you find the turning points of a curve described by the equation y(x)?

A turning point on a curve will be a point where the curve is flat/horizontal i.e. where it has a gradient of zero. We know that to find the equation for the gradient of a curve we have to differentiate it with respect to x. To find the turning point(s) we then have to set the equation for the gradient equal to zero and solve the equation to find the value(s) of x which satisfies the equation. Once we know this value we can substitute it back into the original equation for the curve to find the correct value of y- We will have found the x and y coordinates of the turning point! Heres a straightforward example: Find the turning point of the curve y = x2 - 8x + 19.

GF
Answered by George F. Maths tutor

7781 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


A curve has the equation y = (1/3)x^3 + 4x^2 + 12x +3. Find the coordinates of each turning point and determine their nature.


Show that 2(1-cos(x)) = 3sin^2(x) can be written as 3cos^2(x)-2cos(x)-1=0.


Differentiate y = (x^2 + 1)^1/3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning