How do you find the turning points of a curve described by the equation y(x)?

A turning point on a curve will be a point where the curve is flat/horizontal i.e. where it has a gradient of zero. We know that to find the equation for the gradient of a curve we have to differentiate it with respect to x. To find the turning point(s) we then have to set the equation for the gradient equal to zero and solve the equation to find the value(s) of x which satisfies the equation. Once we know this value we can substitute it back into the original equation for the curve to find the correct value of y- We will have found the x and y coordinates of the turning point! Heres a straightforward example: Find the turning point of the curve y = x2 - 8x + 19.

GF
Answered by George F. Maths tutor

7075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 2Cos(a) - Sin(a) in the form RCos(a+b) Give the exact value of R and the value of b in degrees to 2 d.p.


Find the integral of arctan(x)


Differentiate x^3+ x^2+2=y


Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences