What is the factor theorem?

The factor theorem helps us to find factors of polynomial equations, by substituting in number values for x to see whether the equation equals zero. For any polynomial P(x), the factor theorem would state that P(a) = 0, where (x - a) is a factor of P(x).

So, if P(x) = x2 - 2x - 3, then we can test potential factors by substituting numerical values in for x. If we try x = 2 we find that P(2) = (2)2 - (22) - 3 = -3. Therefore, (x - 2) is not a factor of P(x), as P(2) does not equal zero. However, if we use x = 3 we can see that P(3) = (3)2 - (23) - 3 = 0. Therefore, (x - 3) is a factor of P(x), since P(3) = 0.

AT
Answered by Alex T. Maths tutor

9005 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find a local minimum of the function f(x) = x^3 - 2x.


How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


Differentiate y = (6x-13)^3 with respect to x


When I try to integrate by parts, I end up in an infinite loop. Why is this, and how do you stop?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning