The curve A (y = x3 – x2 + x -1) is perpendicular to the straight-line B at the point P (5, 2). If A and B intersect at P, what is the equation of B? Also, find any stationary points of the curve A.

Firstly find the gradient of A, through differentiation: dy/dy = 3x2 – 2x + 1. To find the gradient at P, substitute the x value of the P coordinate into this equation: dy/dx = 3(2)2 – 2(2) + 2 = 12 – 4 + 2 = 10. To find the perpendicular gradient, we must obtain the negative reciprocal, which in this case equals -1/10. As the equation of a straight line is y = mx + c, and we know m, we can set y = -x/10 + c, and to find c we substitute the values of a known point on line B, in this case the coordinates of P (5, 2): 5 = -2/10 + c, c = 26/5 = 5.2. Thus, the equation of line B is y = -x/10 + 26/5. Stationary points occur when the gradient equals zero, i.e. when dy/dx = 0. Therefore we shall set 3x2 – 2x + 1 = 0. To find the stationary points, we must find the x values using either the quadratic formula, or through factorising. Since the equation does not factorise, we will use the equation x = b +/- sqrt(b2 -4ac)/2a, using a = 3, b = -2 and c = 1. This gives us x = -2 +/- sqrt((-2)2-4(3x1))/2(3) which gives x = -2 +/- sqrt(-8)/6. Since the equation contains ‘sqrt(-8)’ the equation is invalid, and thus we can deduce that there are no stationary points. This can be checked on a graph plotter.

JS
Answered by James S. Maths tutor

4075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = x^2 - 2x-3 + e^3x + 2ln(x)


The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.


Differentiate the function f(x) = sin(x)/(x^2 +1) , giving your answer in the form of a single fraction. Is x=0 a stationary point of this curve?


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning